Abstract

This study investigates an adaptive fault-tolerant control (FTC) for hypersonic flight vehicles (HFVs) with incipient faults and non-Gaussian stochastic output attitudes. In the nonlinear HFV dynamics, a hybrid fuzzy approximation method achieves the linearization, then the stochastic outputs are transformed into probability density functions (PDFs) via rational square root B-spline. The disturbance and faults are estimated simultaneously by an adaptive augmented observer. Then actuator faults are compensated by an bionic adaptive fault-tolerant controller to ensure that the output PDFs accurately track the expected PDFs, thereby matching actual attitude angles with the desired ones, the bionic prey adaptive law can make FTC accurately repair the incipient fault deviations. Lyapunov theory proves the robust stability of the scheme, and simulation illustrates the effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.