Abstract
AbstractRemotely controllable photoresponsive hydrogel actuators are promising for applications in multiple fields. However, simple deformation mechanisms, which rely on the general swelling/deswelling, limit their performance and application. Herein, we report a displacement amplification mechanism based on the buckling deformation of photoresponsive hydrogel film. The on‐chip buckled architecture of the hydrogel enables actuation between a flat 2D shape and tubular 3D buckled shape with remarkable performances, including high deformation ratio (height ratio: ≈360%), tunable cycle motion frequency (0.1—1 Hz) and high cyclic stability. Moreover, localized buckling deformation, such as tube opening and closing, can be controlled in response to photostimulation. Inspired by these biomorphic shapes and motions, an intestine‐mimetic device and demonstrate segmentation with substance crushing and peristalsis motion with substance propelling were further fabricated. This study will provide a useful design principle for hydrogel actuators and shed light on diverse applications in soft robotics, dynamic microfluidics and organs‐on‐chips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.