Abstract
A successful prevention of renal diseases induced by occupational exposure to lead (Pb) and/or cadmium (Cd) largely relies on the capability to detect nephrotoxic effects at a stage when they are still reversible or at least not yet compromising renal function. Hence, the aim of this cross-sectional study was to evaluate the usefulness of a set of early biological markers of oxidative stress or nephrotoxicity for the biomonitoring of workers occupationally exposed to Pb and/or Cd in a non-ferrous metal smelter, and gender, age, socioeconomic status, smoking habits, and drug use-matched control individuals. In exposed subjects, mean levels of Pb in blood and urine were also 387.1+/-99.1 microg Pb/L (1.868+/-0.478 micromol Pb/L) and 217.7+/-117.7 microg Pb/g creatinine (1.051+/-0.568 micromol Pb/g creatinine), and mean levels of Cd in blood and urine were 3.26+/-2.11 microg Cd/L (0.029+/-0.019 micromol Cd/L) and 2.51+/-1.89 microg Cd/g creatinine (0.022+/-0.017 micromol Cd/g creatinine), suggesting thereby relatively low occupational exposure levels. Statistically significant variations in zinc protoporphyrin, malondialdehyde, retinol binding protein, alpha-glutathione S-transferase, and urinary protein levels were reported between the two groups, and were closely correlated with Pb and/or Cd exposure levels. Variations in alphaGST levels were closely associated with Pb exposure. Taken together, these results suggest the use of alpha-glutathione S-transferase excretion in urine as a hallmark of early changes in the proximal tubular integrity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have