Abstract

We aimed to create autonomous on-chip systems that perform targeted translocations of nano- or microscale particles in parallel using machinery that mimics biological systems. By exploiting biomolecular-motor-based motility and DNA hybridization, we demonstrate that single-stranded DNA-labeled microtubules gliding on kinesin-coated surfaces acted as cargo translocators and that single-stranded DNA-labeled cargoes were loaded/unloaded onto/from gliding microtubules at micropatterned loading/unloading sites specified by DNA base sequences. Our results will help to create autonomous molecular sorters and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.