Abstract

This paper describes research in creating autonomous cargo transporters that load, transport, and unload cargo molecules using the machinery in living cells. By exploiting biomolecular motor-based motility and DNA hybridization, we constructed autonomous cargo transporters and demonstrated that kinesin-driven microtubules can selectively load and transport cargoes toward micro- patterned DNA spots designed to be unloading sites and selectively unload the transported cargoes at the DNA spots specified by particular DNA base sequences. These autonomous operations may help create highly miniaturized on-chip-systems such as molecular sorters and sensors, and may also provide an alternative technology to pressure-driven or electrokinetic flow-based microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.