Abstract
Protein-selection mass spectrometry is cost-effective for the discovery of drugs and toxics. Nuclear receptors (NRs) are major targets for pharmaceuticals and endocrine-disrupting chemicals and are, thus, widely used as "bait" proteins. However, their application is limited due to the tendency to lose protein activity during cold storage. To address this problem, we introduced a novel biomineralization-based approach to preserve activity in NRs, exemplified by human retinoic acid receptor alpha (hRARα), a target for cancer and leucocythemia therapy. Since information on the coordination chemistry of metal ion and NR protein complexes is almost unavailable, we applied peptide mapping analysis for the first time for the rational design of his-hRARα-Co phosphate nanobiomaterial with high bioactivity. This nanobiomaterial successfully captured hRARα bioactive chemicals from a Chinese herb and environmental water and discovered an unsaturated fatty acid, (±)-(9Z,11E)-13-hydroxy-9,11-octadecadienoic acid ((±)13-HODE), which exhibited strong hRARα antagonistic activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have