Abstract

Biomineralization plays an important role in various physiological activities in both nature and living organisms. Organisms regulate the crystal nucleation, crystal phase, and crystal growth kinetics of inorganic phases through organic regulation, forming minerals with multi-level order, thereby playing a role in biological support, protection, and metabolic regulation. Unlike general inorganic minerals, biominerals are subtly regulated by organic organisms (such as small organic molecules, peptides, proteins, nucleic acids) and complex environments, possessing biological characteristics and becoming a part of living organisms. It can be seen that the process of biomineralization is not only the process of manufacturing biomaterials, but also the process of using materials to regulate organisms themselves. The biomimetic strategy based on biomineralization can achieve a huge transformation from the biomimetic preparation of functional materials to the biomimetic composite of organisms and materials. In this review, we briefly introduce biomimetic structures inspired by nature itself, and emphasize the important role of the relationship between organisms and materials in the process of biomineralization. We also briefly explore biominerals and their mechanisms. At the same time, a series of functional materials (such as self-cleaning hydrophobic materials, artificial spider silk fibers, mother of pearl like composite materials, humidity responsive materials, and bioprinting materials) synthesized through biomimetic strategies inspired by biomanufacturing materials were systematically elucidated. And a brief discussion was given on the synthesis of new functional organisms using biomimetic strategies to regulate organisms, such as using functional materials to regulate biomimetic repair of hard tissues, using biomineralization strategies to coat vaccines to improve their thermal stability during transportation and drug delivery efficiency in vivo, and constructing functional biomimetic artificial organelles on demand. Finally, this article summarizes the current opportunities and challenges based on biomineralization, providing further feasible guidance for future material regulation of life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call