Abstract

The development of novel tissue constructs from both natural and synthetic biopolymers has attracted widespread attention among researchers, prior to its excellent outcomes in bone tissue regeneration. This research aims to investigate the biocompatibility of carboxymethyl cellulose (CMC)/sodium alginate (SA) embedded with cellulose nanocrystals (CNC) and its surface response due to the biomineralization process as potential implant material. The CMC/SA were prepared with and without CNC using water as the only solvent. It was then freeze-dried for up to 72 h before being further immersed in simulated body fluid (SBF) for comparative studies. Morphological observation by scanning electron microscope (SEM) showed that CMC/SA/CNC (SBF) displayed a spherical apatite structure amid interconnected porous materials with an average particle diameter between 95 and 148 nm. The apatite crystal indicated the existence of calcium (Ca) and phosphorus (P) elements, which was confirmed by energy dispersive X-ray analysis (EDX). All scaffolds showed a porosity of up to 90.13% with a moderate degradation rate and a water absorption value of up to 1100%. Overall, all scaffolds had open, interconnected pore sizes ranging from 40 to 400 µm. Attenuated total reflection – Fourier Transform Infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA) curve showed a new existing peak and lower decomposition rate, respectively, for SBF-treated scaffolds. Stress-strain curve disclosed the highest tensile stress of CMC/SA/CNC (SBF) at 16.2 MPa and 15.75% strain effect. Preliminary in vitro cytotoxicity studies performed with human foetal osteoblast (hFOB) cells showed that cytocompatibility was more evident on CMC/SA/CNC (SBF) scaffolds. This study showed that scaffold-embedded CNC with SBF treatment could be hit upon as material selection for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.