Abstract

Metal-free electrocatalysts for the electrochemical conversion of gases constitute an important asset for a sustainable energy transition. Nucleotides act as redox mediators in the electron transport chain to reduce oxygen in cellular respiration. The biomimicry of such an efficient natural mechanism could be utilized to address the challenges associated with electrochemical gas conversion technologies, such as sluggish kinetics and high overpotentials. Multiple descriptors are generally reported to benchmark the activity of electrocatalysts where the turnover frequency (TOF) is claimed to be the most accurate criterion. Here, a library of graphene nanosheets-nucleotide hybrid materials was prepared, and the electrocatalytic performance towards ORR/OER reactions of a graphene-flavin mononucleotide hybrid was evaluated by rotating disc electrode experiments and TOF estimation. The determination of catalyst loading and dispersion is especially relevant when assessing the intrinsic activity of a catalyst and, therefore, the amount of nucleotide electrocatalyst loaded into the graphene support was thoroughly quantified by a combination of characterization techniques. Density functional theory calculations supported the observed experimental trends, both on the adsorption rate of a given nucleotide on graphene and the catalytic activity of a specific hybrid material. This work constitutes an avenue to predict nature-mimicking electrocatalysts for efficient energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.