Abstract
Since the first emergence of influenza viruses, they have caused the flu seasonally worldwide. Precise detection of influenza viruses is required to prevent the spreading of the disease. Herein, we developed an optical biosensor using peptide-immobilized nanopillar structures for the label-free detection of influenza viruses. The spin-on-glass nanopillar structures were fabricated by nanoimprint lithography. A sialic acid-mimic peptide, which can specifically bind to hemagglutinin on the surface of the influenza virus, was immobilized onto the nanopillars via polymerized dopamine. The constructed nanopillar sensor enabled us to detect influenza A viruses in the range of 103–105 plaque-forming units through simple measurements of reflectance. Our findings suggest that biomimetic modification of nanopillar structures can be an alternative method for the immunodiagnosis of influenza viruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.