Abstract

Biological materials relied on multiple synergistic structural design elements typically exhibit excellent comprehensive mechanical properties. Hierarchical incorporation of different biostructural elements into a single artificial material is a promising approach to enhance mechanical properties, but remains challenging. Herein, a biomimetic structural design strategy is proposed by coupling gradient structure with twisted plywood Bouligand structure, attempting to improve the impact resistance of ceramic-polymer composites. Via robocasting and sintering, kaolin ceramic filaments reinforced by coaxially aligned alumina nanoplatelets are arranged into Bouligand structure with a gradual transition in filament spacing along the thickness direction. After the following polymer infiltration, biomimetic ceramic-polymer composites with a gradient Bouligand (GB) structure are eventually fabricated. Experimental investigations reveal that the incorporation of gradient structure into Bouligand structure improves both the peak force and total energy absorption of the obtained ceramic-polymer composites. Computational modeling further suggests the substantial improvement in impact resistance by adopting GB structure, and clarifies the underlying deformation behavior of the biomimetic GB structured composites under impact. This biomimetic design strategy may provide valuable insights for developing lightweight and impact-resistant structural materials in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.