Abstract
Surface micro-/nanostructures and wettability play important roles in gaseous plastron stability. Inspired by the structure and function of Salvinia and lotus leaf, the microstructure-silicon dioxide-graphene-silicone rubber (MS-SiO2-GN-SR) composites with bubble trapping ability were synthesized. MS-SiO2-GN-SR can rapidly adsorb a large number of air bubbles under water to form a large gaseous plastron, which can be used as an antifouling barrier to prevent microbial invasion. MS-SiO2-GN-SR has a strong bubble adsorption function due to its superhydrophobicity and surface roughness. Under dynamic conditions, compared with GN-SR, the adhesion of Gram-negative bacteria, Gram-positive bacteria, and marine algae attachment on the surface of MS-SiO2-GN-SR decreased by 50.51%, 63.89%, and 60.8%, respectively. After 48h incubation, MS-SiO2-GN-SR still maintained the best antifouling performance. These results suggest that physical antifouling strategies based on macroscopic gaseous plastron are promising for the marine industry and maritime transport.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have