Abstract

Fusion events in living cells are intricate phenomena that require the coordinate action of multicomponent protein complexes. However, simpler synthetic tools to control membrane fusion in artificial cells are highly desirable. Native membrane fusion machinery mediates fusion, driving a delicate balance of membrane curvature and tension between two closely apposed membranes. Here, we show that silica nanoparticles (SiO2 NPs) at a size close to the cross-over between tension-driven and curvature-driven interaction regimes initiate efficient fusion of biomimetic model membranes. Fusion efficiency and mechanisms are studied by Förster resonance energy transfer and confocal fluorescence microscopy. SiO2 NPs induce a slight increase in lipid packing likely to increase the lateral tension of the membrane. We observe a connection between membrane tension and fusion efficiency. Finally, real-time confocal fluorescence microscopy reveals three distinct mechanistic pathways for membrane fusion. SiO2 NPs show significant potential for inclusion in the synthetic biology toolkit for membrane remodeling and fusion in artificial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call