Abstract
Biometric authentication systems are pervasive in modern society, but they are quite vulnerable to spoofing attacks. Research on spoofing (or liveness) detection is therefore very active. A number of methods have been proposed in the literature, sometimes with very promising results, but limited robustness with respect to the large variety of biometric traits, sensors, and attacks encountered in real-life. Recently, methods based on Convolutional Neural Networks (CNNs) are drawing great attention, given their success in many other image processing tasks. However, despite some promising results, they seem to suffer the same robustness problem, requiring heavy training to work properly. Here, we propose a new CNN architecture for biometric spoofing detection. Thanks to domain-specific knowledge, accounted for through a suitable loss function, a compact architecture is obtained, allowing reliable training also in the presence of small-size datasets. Experiments prove the proposal to provide state-of-art performance on several widespread datasets for face and iris liveness detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.