Abstract

Biomedical event extraction is an important branch of biomedical information extraction. Trigger extraction is the most essential sub-task in event extraction, which has been widely concerned. Existing trigger extraction studies are mostly based on conventional machine learning or neural networks. But they neglect the ambiguity of word representations and the insufficient feature extraction by shallow hidden layers. In this paper, trigger extraction is treated as a sequence labeling problem. We introduce the language model to dynamically compute contextualized word representations and propose a multi-layer residual bidirectional long short-term memory (BiLSTM) architecture. First, we concatenate contextualized word embedding, pretrained word embedding and character-level embedding as the feature representations, which effectively solves the tokens’ ambiguity in biomedical corpora. Then, the designed BiLSTM block with residual connection and gated multi-layer perceptron is adopted to extract features iteratively. This architecture improves the ability of our model to capture information and avoids gradient exploding or vanishing. Finally, we combine the multi-layer residual BiLSTM with CRF layer to obtain more reasonable label sequences. Comparing with other state-of-the-art methods, the proposed model achieves the competitive performance (F1-score: 80.74%) on the biomedical multi-level event extraction (MLEE) corpus without any manual participation and feature engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.