Abstract

Biomedical event extraction is one of the fundamental tasks in medical research and disease prevention. Event trigger usually signifies the occurrence of a biomedical event by adopting a word or a phrase. Meanwhile, the task of biomedical event trigger identification is a critical and prerequisite step for biomedical event extraction. The existing methods generally rely on the complex and unobtainable features engineering. To alleviate this problem, we propose a hybrid structure FBSN which consists of Fine-grained Bidirectional Long Short Term Memory (FBi-LSTM) and Support Vector Machine (SVM) to deal with the event trigger identification. The hybrid architecture makes the most of their advantages: FBi-LSTM is to mainly extract the higher level features by the fine-grained representations, and SVM is largely appropriate for small dataset for classifying the results of biomedical event trigger. After that, the popular dataset Multi Level Event Extraction (MLEE) is employed to verify our hybrid structure. Experimental results show that our method is able to achieve the state-of-the-art baseline approaches. Meanwhile, we also discuss the detailed experiments in trigger identification task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.