Abstract
Parkinson's disease (PD) is characterized by a slow, short-stepping, shuffling gait pattern caused by a combination of motor control limitations due to a reduction in dopaminergic neurons. Gait disorders are indicators of global health, cognitive status, and risk of falls and increase with disease progression. Therefore, the use of quantitative information on the gait mechanisms of PD patients is a promising approach, particularly for monitoring gait disorders and potentially informing therapeutic interventions, though it is not yet a well-established tool for early diagnosis or direct assessment of disease progression. Over the years, many studies have investigated the spatiotemporal parameters that are altered in the PD gait pattern, while kinematic and kinetic gait parameters are more limited. A scoping review was performed according to the PRISMA guidelines. The Scopus and PubMed databases were searched between 1999 and 2023. A total of 29 articles were included that reported gait changes in PD patients under different gait conditions: single free walking, sequential motor task, and dual task. The main findings of our review highlighted the use of optoelectronic systems for recording kinematic parameters and force plates for measuring kinetic parameters, due to their high accuracy. Most gait analyses in PD patients have been conducted at self-selected walking speeds to capture natural movement, although studies have also examined gait under various conditions. The results of our review indicated that PD patients experience alterations in the range of motion of the hip, knee, and ankle joints, as well as a reduction in the power generated/absorbed and the extensor/flexor moments. These findings suggest that the PD gait pattern may be more effectively understood using kinematic and kinetic parameters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have