Abstract
We have developed a 2-D analytical biomechanical model for monoarticular open kinetic-chain exercises with lever selectorized equipment, and different relative placement between the joint center of rotation (J) and the center of rotation (C) of the resistance input lever ("off-center" exercises). All the relevant geometrical aspects of such exercises have been characterized: the change with the joint angle of the distance between the resistance pad (P) and J, and of the angle between CP and JP (i.e., the angle between the resistance input lever and the exercising limb). These changes may strongly affect the joint load and the muscle torque in inverse dynamic problems, given the joint kinematics and the mass of the selected weight stack. Therefore, the muscle torque, the shear and axial components of the joint load have been calculated analytically as a function of the relative positioning of C and J, and the length CP, in addition to the parameters that define the joint kinematics, the equipment mechanics, and the external load. From these results we have derived the optimal cam profiles for "off-center" exercises, as well as the geometrical "off-center" setting that minimizes the shear component of the tibiofemoral joint load in leg extension equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.