Abstract

A model has been developed to definitively characterize the resistance properties and the joint loading (i.e., shear and compressive components of the joint reaction force) in single-joint exercises with ideal elastic bands. The model accounts for the relevant geometric and elastic properties of the band, the band pre-stretching, and the relative positioning among the joint center of rotation and the fixation points of the band. All the possible elastic torque profiles of ascending–descending, descending, or ascending type were disclosed in relation to the different ranges of joint angles. From these results the elastic resistance setting that best reproduces the average-user's knee extensor torque in maximal isometric/isokinetic efforts was determined. In this optimized setting, the shear tibiofemoral reaction force corresponding to an anterior (posterior) tibial displacement was 65% smaller than (nearly the same as) that obtained in a cam-equipped leg-extension equipment for equal values of resistance torque peak, whereas the compressive tibiofemoral reaction force was 22% higher. Compared to a weight-stack leg-extension equipment, an elastic resistance optimized setting has the potential to give a more effective quadriceps activation across the range of motion, and greatly reduces the anterior cruciate ligament strain force, which represents the main drawback of existing open kinetic-chain knee-extension exercises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.