Abstract

Airbags are safety devices in vehicles effectively suppressing passengers' injuries during accidents. Although there are still many cases of eye injuries reported due to eye-airbag impacts in recent years. Biomechanical approaches are now feasible and can considerably help experts to investigate the issue without ethical concerns. The eye-airbag impact-induced stresses/strains in various components of the eye were found to investigate the risk of injury in different conditions (impact velocity and airbag pressure). Three-dimensional geometry of the eyeball, fat and bony socket as well as the airbag were developed and meshed to develop a finite element model. Nonlinear material properties of the vitreous body and sclera were found through the in vitro tests on ovine samples and for the other components were taken from the literature. The eye collided the airbag due to the velocity field in the dynamic explicit step in Abaqus. Results of compression tests showed a nonlinear curve for vitreous body with average ultimate stress of 22 (18-25) kPa. Tensile behavior of sclera was viscoelastic nonlinear with ultimate stresses changing from 2.51 (2.3-2.7) to 4.3 (4-4.6) MPa when loading strain rate increased from 10 to 600 mm/min. Sclera, ciliary body, cornea and lens were the eye components with highest stresses (maximum stress reached up to 9.3 MPa). Cornea, retina and choroid experienced the highest strains with the maximum up to 14.1%. According to the previously reported injury criteria for cornea, it was at high risk of injury considering both stress and strains. Reduced pressure of the airbag was beneficial decreased stress of all components. Comprehensive investigations in this area can disclose biomechanical behavior of the eye during eye-airbag impact. Effective guidelines can be drawn for airbag design for instance the airbag pressure which reduces risk of eye injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.