Abstract

This paper presents a novel scheme for the use of linear programming to calculate muscle contraction forces in models describing musculoskeletal system biomechanics. Models of this kind are frequently found in the biomechanics literature. In most cases they involve muscle contraction force calculations that are statically indeterminate, and hence use optimization techniques to make those calculations. We present a linear programming optimization technique that solves a two-objective problem with two sequential linear programs. We use the technique here to minimize muscle intensity and joint compression force, since those are commonly used objectives. The two linear program model has the advantages of low computation cost, ready implementation on a micro-computer, and stable solutions. We show how to solve the model analytically in simple cases. We also discuss the use of the dual problem of linear programming to gain understanding of the solution it provides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.