Abstract

Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue characterized by low bone mass and spontaneous fractures, as well as extra-skeletal manifestations, such as dental abnormalities, blue sclera, hearing loss and joint hypermobility. Tendon ruptures have been reported in OI patients. Here, we characterized the biomechanical, structural and tissue material properties of bone and tendon in 5-week-old female osteogenesis imperfecta mice (oim), a validated model of severe type III OI, and compared these data with age- and sex-matched WT littermates. Oim tendons were less rigid and less resistant than those of WT mice. They also presented a significantly higher rate of pentosidine, without significant modification of enzymatic crosslinking. The oim bones were less resistant and avulsion fractures were evident at high tendinous stress areas. Alterations of trabecular and cortical bone microarchitectures were noticed in young female oim. Bone tissue material properties were also modified, with a less mature and more mineralized matrix in association with lower collagen maturity. Our data suggest that the tendon-to-bone unit is affected in young oim mice, which could explain tendon ruptures and bone fragility observed in OI patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call