Abstract

[Purpose] This study aimed to clarify the power source for the swing phase of a hip disarticulation prosthetic limb using biomechanical gait analysis. [Participants and Methods] In this cross-sectional study, six participants who underwent hip disarticulation and seven healthy adults were recruited. Their gaits were assessed using the three-dimensional motion analysis and four force plates. [Results] From pre-swing to initial swing, the angle of the lumbar spine's angle changed by 9° from the flexion to extension positions. However, the power of the lumbar spine was <0.003 W/kg for the entire gait cycle. The peak value of joint moment and hip joint power on the unaffected side were 1 nm/kg and 0.7 W/kg, respectively. From pre-swing to initial swing, the prosthetic limb is pushed forward by extension of the hip joint on the intact side, while the spine returns to the flexion direction. [Conclusion] The hip extension force on the unaffected side was the main force responsible for swinging out the prosthesis, not the lumbar vertebrae's force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call