Abstract

The authors investigated the biomechanical properties of transpedicular discectomy in the thoracic spine and compared the effects on spinal stability of a partial and total facetectomy. Human thoracic specimens were tested while intact, after a transpedicular discectomy with partial facetectomy, and after an additional total facetectomy was incorporated. Nonconstraining pure moments were applied under load control (maximum 7.5 Nm) to induce flexion, extension, lateral bending, and axial rotation while spinal motion was measured at T8-9 optoelectronically. The range of motion (ROM) and lax zone were determined in each specimen and compared among conditions. Transpedicular discectomy with and without a total facetectomy significantly increased the ROM and lax zone in all directions of loading compared with the intact spine (p < 0.008). The segmental increase in ROM observed with the transpedicular discectomy was 25%. The additional total facetectomy created an insignificant 3% further increase in ROM compared with medial facetectomy (p > 0.2). Transpedicular discectomy can be performed in the thoracic spine with a modest decrease in stability expected. Because the biomechanical behavior of a total facetectomy is equivalent to that of a medial facetectomy, the additional facet removal may be incorporated without further biomechanical consequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call