Abstract

BackgroundThe Dynesys system provides stability for destabilized spines while preserving segmental motion. However, clinical studies have demonstrated that the Dynesys system does not prevent adjacent segment disease. Moreover, biomechanical studies have revealed that the stiffness of the Dynesys system is comparable to rigid fixation. Our previous studies showed that adjusting the cord pretension of the Dynesys system alleviates stress on the adjacent level during flexion. We also demonstrated that altering the stiffness of Dynesys system spacers can alleviate stress on the adjacent level during extension of the intact spine. In the present study, we hypothesized that omitting the cord preload and changing the stiffness of the Dynesys system spacers would abate stress shielding on adjacent spinal segments.MethodsFinite element models were developed for - intact spine (INT), facetectomy and laminectomy at L3-4 (DEC), intact spine with Dynesys system (IntDyWL), decompressed spine with Dynesys system (DecDyWL), decompressed spine with Dynesys system without cord preload (DecDyNL), and decompressed spine with Dynesys system assembled using spacers that were 0.8 times the standard diameter without cord pretension (DecDyNL0.8). These models were subjected to hybrid control for flexion, extension, axial rotation; and lateral bending.ResultsThe greatest decreases in range of motion (ROM) at the L3-4 level occurred for axial rotation and lateral bending in the IntDyWL model and for flexion and extension in the DecDyWL model. The greatest decreases in disc stress occurred for extension and lateral bending in the IntDyWL model and for flexion in the DecDyWL model. The greatest decreases in facet contact force occurred for extension and lateral bending in the DecDyNL model and for axial rotation in the DecDyWL model. The greatest increases in ROMs at L2-3 level occurred for flexion, axial rotation and lateral bending in IntDyWL model and for extension in the DecDyNL model. The greatest increases in disc stress occurred for flexion, axial rotation and lateral bending in the IntDyWL model and for extension in the DecDyNL model. The greatest increases in facet contact force occurred for extension and lateral bending in the DecDyNL model and for axial rotation in the IntDyWL model.ConclusionsThe results reveals that removing the Dynesys system cord pretension attenuates the ROMs, disc stress, and facet joint contact forces at adjacent levels during flexion and axial rotation. Removing cord pretension together with softening spacers abates stress shielding for adjacent segment during four different moments, and it provides enough security while not jeopardizes the stability of spine during axial rotation.

Highlights

  • The Dynesys system provides stability for destabilized spines while preserving segmental motion

  • The IntDyWL model showed the smallest decrease in range of motion (ROM) during extension (−20.47%), but it displayed the largest decreases in ROM during axial rotation (−12.20%) and lateral bending (−45.87%) compared to the intact spine (INT) model

  • It is noteworthy that the DecDyNL model and the DecDyNL0.8 model increased in ROM compared to the INT model (3.90% and 3.41%, respectively) during axial rotation (Table 3)

Read more

Summary

Introduction

The Dynesys system provides stability for destabilized spines while preserving segmental motion. We demonstrated that altering the stiffness of Dynesys system spacers can alleviate stress on the adjacent level during extension of the intact spine. We hypothesized that omitting the cord preload and changing the stiffness of the Dynesys system spacers would abate stress shielding on adjacent spinal segments. The pedicle rod system had been the gold standard for spinal stabilization for three decades This rigid fixation system ensures the fusion of the grafted bones and secures the stability of the bridged level. The high stiffness of the pedicle rod system was supposed to be implicated with the role in accelerating degenerative changes at the adjacent levels of the spinal column [4,5,6,7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.