Abstract
The pedicle screw (PS) is the cornerstone of spinal instrumentation, and its failure often entails additional surgery. Screw pullout is one of the most common reasons for screw failure, particularly in the elderly population. In this study the authors undertook a biomechanical comparison of the maximum pullout force (MPF) required for single- and dual-lead PSs in cadaver vertebrae. Radiographs of 40 cadaveric vertebrae (T11-L5) were obtained, and bone mineral density (BMD) was measured in the lateral plane using dual-x-ray absorptiometry with a bone densitometer. One screw of each design was implanted for side-by-side comparison. Vertebrae were potted and mounted on an MTS test frame for accurate measurement of MPF. A total of 80 PSs were tested, 40 each of single- and dual-lead design types. The average MPF for dual-lead screws (533.89 +/- 285.7 N) was comparable to that of single-lead screws (524.90 +/- 311.6 N) (p = 0.3733). The BMD had a significant correlation with MPF for both dual-lead (r = 0.56413, p < 0.0001) and single-lead screws (r = 0.56327, p < 0.0001). Barring the effect of BMD, this in vitro biomechanical test showed no significant difference in MPF between single- and dual-lead PSs. Dual-lead PSs can be used to achieve a faster insertion time, without compromising pullout force.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.