Abstract

Tumor immunotherapy is a promising anticancer strategy; however, tumor cells may employ resistance mechanisms, including downregulation of major histocompatibility complex (MHC) molecules to avoid immune recognition. Here, we investigate reprogramming nanoparticles (NPs) that deliver immunostimulatory genes to enhance immunotherapy and address defective antigen presentation in skin cancer in vitro and in vivo. We use a modular poly(beta-amino ester) (PBAE)-based NP to deliver DNA encoding 4-1BBL, IL-12, and IFNγ to reprogram human Merkel cell carcinoma (MCC) cells in vitro and mouse melanoma tumors in vivo to drive adaptive antitumor immune responses. Optimized NP formulations delivering 4-1BBL/IL-12 or 4-1BBL/IL-12/IFNγ DNA successfully transfect MCC and melanoma cells in vitro and in vivo, respectively, resulting in IFNγ-driven upregulation of MHC class I and II molecules on cancer cells. These NPs reprogram the tumor immune microenvironment (TIME) and elicit strong T-cell-driven immune responses, leading to cancer cell killing and T-cell proliferation in vitro and slowing tumor growth and improving survival rates in vivo. Based on expected changes to the tumor immune microenvironment, particularly the importance of IFNγ to the immune response and driving both T-cell function and exhaustion, next-generation NPs codelivering IFNγ were designed. These offered mixed benefits, exchanging improved polyfunctionality for increased T-cell exhaustion and demonstrating higher systemic toxicity in vivo. Further profiling of the immune response with these NPs provides insight into T-cell exhaustion and polyfunctionality induced by different formulations, providing a greater understanding of this immunotherapeutic strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.