Abstract

The repair of critical-sized bone defects remains a major challenge for clinical orthopedic surgery. Here, we develop a surface biofunctionalized three-dimensional (3D) porous polyether-ether-ketone (PEEK) scaffold that can simultaneously promote osteogenesis and regulate macrophage polarization. The scaffold is created using polydopamine (PDA)-assisted immobilization of silk fibroin (SF) and the electrostatic self-assembly of nanocrystalline hydroxyapatite (nano-HA) on a 3D-printed porous PEEK scaffold. The SF/nano-HA functionalized surface provides a bone-like microenvironment for osteoblastic cells' adhesion, proliferation, mineralization and osteogenic differentiation. Moreover, the biofunctionalized surface can effectively drive macrophages polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Integrin β1-specific cell-matrix binding and the activation of Ca2+ receptor-mediated signaling pathway play critical roles in the regulation of macrophage polarization. Compared with the as-printed scaffold, the SF/nano-HA functionalized porous PEEK scaffold induces minimal inflammatory response, enhanced angiogenesis, and substantial new bone formation, resulting in improved osseointegration in vivo. This study not only develops a promising candidate for bone repair but also demonstrates a facile surface biofunctionalization strategy for orthopedic implants to improve osseointegration by stimulating osteogenesis and regulating immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.