Abstract
Ionic liquid (IL) pretreatment methods show incredible promise for the efficient conversion of lignocellulosic feedstocks to fuels and chemicals. Given their low vapor pressures, distillation-based methods of extracting ionic liquids out of biomass post-pretreatment have historically been ignored in favor of alternative methods. We demonstrate a process to distill four acetate-based ionic liquids ([EthA][OAc], [PropA][OAc], [MAEthA][OAc], and [DMAEthA][OAc]) at low pressure and high purity that overcome some disadvantages of “water washing” and “one pot” recovery methods. Out of four tested ILs, ethanolamine acetate ([EthA][OAc]) is shown to have the most agreeable conversion metrics for commercial bioconversion processes achieving 73.6 % and 51.4 % of theoretical glucose and xylose yields respectively and >85 % recovery rates. Our process metrics are factored into a techno-economic analysis where [EthA][OAc] distillation is compared to other recovery methods as well as ethanolamine pretreatment at both milliliter and liter scales. Although our TEA shows [EthA][OAc] distillation underperforming against other processes, we show a step-by-step avenue to reduce sugar production cost below the wholesale dextrose price at scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.