Abstract
Abstract In the present study, naturally occurring ferulic acid (FA) is used for the first time as raw material to copolymerize with maleic anhydride (MAH) for fabricating bio-based hollow polymer particles (BHPs). After consecutive reaction with ethylenediamine and HCl, BHPs were transformed to ammonium-functionalized BHPs (BHP-NH3+) which were identified by SEM, TEM, FT-IR and XPS measurements. BHP-NH3+ served as high-performance selective adsorbent for removal methyl orange (MO), a model anionic dye from water. Detailed adsorption studies reveal that the adsorption of MO onto BHP-NH3+ better fits the pseudo-second-order kinetics model and the adsorption isotherm can be well-described by Langmuir isotherm model with a maximum adsorption capacity of 952 mg/g at pH 7. The removal of MO can maintain a high level in a wide pH range (from 5 to 10). Desorption tests demonstrate that the adsorbent after adsorbing MO can be facilely regenerated to recover both the dye and adsorbent with high efficiency (over 95%) in basic solution (pH 11). Moreover, the biobased adsorbent shows high reusability and stability over five adsorption/desorption cycles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have