Abstract

As one of the most widely used polymers, the intrinsic brittleness and high flammability bring about a stringent requirement for the practical application of epoxy resins (EPs). It is difficult to toughen EP without compromising its mechanical and thermal properties for many conventional toughening agents. Here, a novel furan-derived bio-based polyphosphazene (PFMP) with a flexible backbone and rigid side groups was prepared by the nucleophilic substitution reaction between polydichlorophosphazene (PDCP) and furfuralcohol. The resultant PFMP was incorporated into EP to realize exceptional toughening, strengthening, and flame retardant function. By adding 15% of PFMP, the limit oxygen index value is from 25% (EP) to 33% (EP/PFMP-15) and reaches the UL-94 V-0 rating. According to the cone calorimeter results, EP/PFMP-15 exhibits exceedingly reduced peak heat release rate (pHRR) (50.2%) and total heat release (THR) (49.6%). The significantly increased fire performance index (FPI) and decreased fire growth rate index (FIGRA) of EP/PFMP-15 demonstrate an improvement in its flame retardancy. The catalytic carbonization effect (condensed phase) and radical quenching effect (gas phase) of PFMP account for the greatly improved flame retardancy. Moreover, the impact and tensile tests indicate that PFMP can ameliorate the mechanical performance of EP with a maximum increase of impact strength (111.8%) and elongation at break (35.2%) for EP/PFMP-5. With 15% PFMP added, the tensile strength of EP/PFMP-15 increases by 40.4%. This work demonstrates that PFMP is expected to overcome shortcomings (flammability, toughness, and strength) of EP and spread its applied fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.