Abstract

Nowadays, water contamination resulting from the disposal of industrial and urban waste poses a significant threat to marine life and human. Hence, providing an effective treatment approach to reduce the total cost and duration of the wastewater treatment process is crucial. Although the adsorption and photocatalysis methods show superb potential for removing hazardous pollutants from water, their combination through a suitable synthesis route is one of the most effective ways to overcome their limitations. Activated carbon (AC) significantly accelerates the rate of pollutant degradation for AC-based photocatalysts compared to bare photocatalysts because of its ability to increase the number of attachment sites, strengthen the interaction between pollutants and photocatalysts, and facilitate rapid electron transfer to prevent electron or hole recombination. This study aims to investigate four main objectives: 1) evaluating key parameters to enhance the surface characterization of AC-derived from lignocellulosic sources using physical and chemical techniques; 2) Surveying various approaches for synthesizing AC-based photocatalysts; 3) explaining the mechanism of photocatalytic degradation of pollutants and the operating parameters in the wastewater treatment process; and 4) providing an overview of the opportunities, challenges, suggestions, and potential future outlooks. Future studies should focus on understanding the structural properties of AC to design effective photocatalytic systems for degrading hazardous contaminants. Generally, AC-based nanocomposites reduce both process costs and duration and promote environmental sustainability by effectively eliminating pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call