Abstract
During the propagation of herbaceous stem-tip cuttings, the photosynthetic daily light integral (DLI) inside greenhouses can be low (≈1–4 mol·m−2·d−1) during the winter and early spring when propagation typically occurs. The mechanisms by which cuttings adapt biomass allocation patterns, gas exchange, and starch accumulation in response to the photosynthetic DLI are not clearly understood. Our objectives were to quantify the impact of DLI on growth, photosynthesis, and carbohydrate concentration during the root development phase of cutting propagation. Petunia (Petunia ×hybrida ‘Suncatcher Midnight Blue’), geranium (Pelargonium ×hortorum ‘Fantasia Dark Red’), and new guinea impatiens (Impatiens hawkeri ‘Celebration Pink’) cuttings were propagated in a glass-glazed greenhouse with 23 °C air and substrate temperature set points. After callusing (≈5 mol·m−2·d−1 for 7 days), cuttings of each species were placed under either no shade or one of the two different fixed-woven shade cloths providing ≈38% or 86% shade with 16 hours of supplemental light for 14 days, resulting in DLIs of 13.0‒14.2, 5.5‒6.0, and 2.0‒2.4 mol·m−2·d−1, respectively. Leaf, stem, and root biomass accumulation increased linearly with DLI by up to 122% (geranium), 118% (petunia), and 211% (new guinea impatiens), as DLI increased by ≈11‒12 mol·m−2·d−1, while relative biomass allocation into roots increased under increasing DLI. Compared with cuttings rooted under low DLIs (2.0‒2.4 mol·m−2·d−1), cuttings of all three species generally had greater maximum gross photosynthesis under high DLIs (13.0‒14.2 mol·m−2·d−1) starting 5 or 8 days after transfer. Starch concentration increased with DLI by up to 946% (impatiens) during propagation. Taken together, the increased growth of cuttings appears to be a result of increased carbohydrate availability from elevated photosynthesis and/or photosynthetic capacity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have