Abstract

IntroductionCongenital heart disease (CHD) is one of the most prevalent birth defects in the world. The pathogenesis of CHD is complex and unclear. With the development of metabolomics technology, variations in metabolites may provide new clues about the causes of CHD and may serve as a biomarker during pregnancy.MethodsSixty-five amniotic fluid samples (28 cases and 37 controls) during the second and third trimesters were utilized in this study. The metabolomics of CHD and normal fetuses were analyzed by untargeted metabolomics technology. Differential comparison and randomForest were used to screen metabolic biomarkers.ResultsA total of 2472 metabolites were detected, and they were distributed differentially between the cases and controls. Setting the selection criteria of fold change (FC) ≥ 2, P value < 0.01 and variable importance for the projection (VIP) ≥ 1.5, we screened 118 differential metabolites. Within the prediction model by random forest, PE(MonoMe(11,5)/MonoMe(13,5)), N-feruloylserotonin and 2,6-di-tert-butylbenzoquinone showed good prediction effects. Differential metabolites were mainly concentrated in aldosterone synthesis and secretion, drug metabolism, nicotinate and nicotinamide metabolism pathways, which may be related to the occurrence and development of CHD.ConclusionThis study provides a new database of CHD metabolic biomarkers and mechanistic research. These results need to be further verified in larger samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.