Abstract
Polar cod Boreogadus saida were exposed weekly to two doses of dietary crude oil for 4 weeks followed by 2 weeks of depuration. Administered doses corresponded on average to 4 and 9 μg ΣPAHs g −1 fish week −1. Cytochrome P4501A1 ( cyp1a1) and glutathione S-transferase ( gst) mRNA expression, ethoxyresorufin O-deethylase (EROD) activity and metabolites in the bile showed strong and dose-dependent inductions at 2 and 4 weeks of exposure. Following 2 weeks depuration, mRNA expression of cyp1a1 and gst and PAH metabolites returned to basal levels while EROD activity and GST activity were still induced in the high oil treatment. The mRNA expressions of antioxidant defense genes (catalase, glutathione peroxidase and cytosolic and mitochondrial superoxide dismutase) did not change significantly during the experiment. Catalase activity was significantly depressed at week 2 in the high oil treatment. We conclude that the cyp1a1 mRNA expression, EROD activities and bile metabolites were the most reliable biomarkers of exposure while gst mRNA expression and GST activity were less sensitive and are considered only as complementary. Antioxidant defenses were poor biomarkers to assess effects of crude oil exposure in polar cod.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have