Abstract
ObjectivesThe mature botulinum neurotoxin (BoNT) is a long peptide chain consisting of a light chain (L) and a heavy chain (H) linked by a disulfide bond, where the heavy chain is divided into a translocation domain and an acceptor binding domain (Hc). In this study, we further explored the biology activity and characteristics of recombinant L-HN fragment (EL-HN) composed of the L and HN domains of BoNT/E in vivo and in vitro. MethodsNeurotoxicity of L-HN fragments from botulinum neurotoxins was assessed in mice. Cleavage of dichain EL-HN in vitro and in neuro-2a cells was assessed and compared with that of single chain EL-HN. Interaction of HN domain and the receptor synaptic vesicle glycoprotein 2C (SV2C) was explored in vitro and in neuro-2a cells only expressing SV2C. ResultsWe found that the 50% mouse lethal dose of the nicked dichain EL-HN fragment (EL–HN–DC) was 0.5 μg and its neurotoxicity was the highest among the L-HN's of the four serotypes of BoNT (A/B/E/F). The cleavage efficiency of EL–HN–DC toward synaptosome associated protein 25 (SNAP25) in vitro was 3-fold higher than that of the single chain at the cellular level, and showed 200-fold higher animal toxicity. The EL–HN–DC fragment might enter neuro-2a cells via binding to SV2C to efficiently cleave SNAP25. ConclusionsThe EL-HN fragment showed good biological activities in vivo and in vitro, and could be used as a drug screening model and to further explore the molecular mechanism of its transmembrane transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.