Abstract

Nowadays the development of sustainable technologies for the effective production of polymeric materials that can be used as biomaterials will be of importance. In this work, cellulose (CEL) was purified from potato peel waste (PPW) and used to produce electrospun nanofibers for tissue engineering applications. The purified CEL was solubilized in copper ethylenediamine (Cuen) and the electrospun nanofibers was produced through electrospinning technique in diameter range of 250–500 nm at electrical field strength of 20 kV. To confirm the applicability of the electrospun CEL scaffolds in tissue engineering, in vitro BALB-3T3 fibroblastic cell adhesion and cell proliferation tests were employed in this study. Cell viability was evaluated by staining with ethidium bromide (EtBr) and acridine orange (AO) to evaluate the possible effects of cytotoxicity of the CNF scaffolds. Fluorescence studies confirmed that BALB-3T3 viable cells attached and spread throughout the CEL scaffold. The attachment and spreading of viable cells suggests that electrospun CEL scaffolds support growth of BALB-3T3 fibroblasts cells and suggests that PPW can be a useful source of raw material for the production of scaffolds for tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.