Abstract
Bacterial community structures in four sequencing anoxic/anaerobic–aerobic membrane bioreactors (SAMs) that were fed with synthetic medium composed of different organic compounds in substrate as carbon source; acetate-dominant (acetate/propionate=4/1), propionate-dominant (acetate/propionate=1/4), glucose-dominant (glucose/acetate=4/1) and methanol-dominant (methanol/acetate/propionate=6/3/1) were analyzed by respiratory quinone profile and fluorescent in situ hybridization (FISH) techniques. The SAMs were operated at controlled pH range 7–8.5 and at constant temperature 25 °C. Total nitrogen (TN), total phosphorus (TP) and COD removal performances were also evaluated and compared. In addition, trans-membrane pressure was monitored to observe the impact of substrate composition on membrane fouling. The dominance of the mole fraction of ubiquinone (UQ-8) in the SAMs indicated dominance of the β-subclass of Proteobacteria; however, its population comparatively decreased when the substrate was glucose dominant or methanol dominant. A relatively higher and stable enhanced biological phosphorus removal performance was observed when methanol-dominant substrate was used concurrently with an increase in the γ-subclass of Proteobacteria. The population of the α-subclass of Proteobacteria slightly increased along with a decrease in phosphate removal activity when the substrate was glucose-dominant. Results from FISH analysis also supported the findings of the quinone profile. The trans-membrane pressure variation in the SAMs indicated that fouling was relatively rapid when propionate-dominant or methanol-dominant substrate was used and most stable when glucose-dominant substrate was used. A combination of methanol and acetate would be a better choice as an external carbon source when nutrients removals, as well as fouling, are considered in the membrane bioreactor- (MBR-) coupled biological nutrients removing (BNR) process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.