Abstract

Hydrogen is one of the main energy carriers playing a prominent role in the future decarbonization of the economy. However, several aspects regarding the transport and storage of this gas are challenging. The intermediary conversion of hydrogen into high-density energy molecules may be a crucial step until technological conditions are ready to attain a significant reduction in fossil fuel use in transport and the industrial sector. The process of transforming hydrogen into methane by anaerobic digestion is reviewed, showing that this technology is a feasible option for facilitating hydrogen storage and transport. The manuscript focuses on the role of anaerobic digestion as a technology driver capable of fast adaptation to current energy needs. The use of thermophilic systems and reactors capable of increasing the contact between the H2-fuel and liquid phase demonstrated outstanding capabilities, attaining higher conversion rates and increasing methane productivity. Pressure is a relevant factor of the process, allowing for better hydrogen solubility and setting the basis for considering feasible underground hydrogen storage concomitant with biological methanation. This feature may allow the integration of sequestered carbon dioxide as a relevant substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call