Abstract

Immediate verification of whether a patient being examined is correct is desirable, even if the scan ranges change during different examinations for the same patient. This study proposes an advanced biological fingerprint technique for the rapid and reliable verification of various scan ranges in computed tomography (CT) scans of the torso of the same patient. The method comprises the following steps: geometric correction of different scans, local feature extraction, mismatch elimination, and similarity evaluation. The geometric magnification correction was aligned at the scanner table height in the first two steps, and the local maxima were calculated as the local features. In the third step, local features from the follow-up scout image are matched to those in the corresponding baseline scout image via template matching and outlier elimination via a robust estimator. We evaluated the correspondence rate based on the inlier ratio between corresponding scout images. The ratio of inliers between the baseline and follow-up scout images was assessed as the similarity score. The clinical dataset, including chest, abdomen-pelvis, and chest-abdomen-pelvis scans, included 600 patients (372 men, 68 ± 12years) who underwent two routine torso CT examinations. The highest area under the receiver operating characteristic curve (AUC) was 0.996, which was sufficient for patient verification. Moreover, the verification results were comparable to the conventional method, which uses scout images in the same scan range. Patient identity verification was achieved before the main scan, even in follow-up torso CT, under different scan ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.