Abstract

Zinc is an important element for bone structure and metabolism. Its interaction with hydroxyapatite has been investigated for the improvement of bone repair. The objective of this study was to evaluate the in vitro and in vivo biological response to nanostructured calcium alginate-hydroxyapatite (HA) and zinc-containing HA (ZnHA). Cytocompatibility was evaluated by applying PrestoBlue reagent after exposing murine pre-osteoblast cells to extracts of each biomaterial microspheres. After physical and chemical characterization, the biomaterial microspheres were implanted in a critical size calvaria defect (8 mm) in Wistar rats (n = 30) that were randomly divided into the HA and ZnHA groups. Tissue samples were evaluated through histological and histomorphometric analyses after 1, 3, and 6 months (n = 5). The results showed cellular viability for both groups compared to the negative control, and no differences in metabolic activity were observed. The HA group presented a significant reduction of biomaterial compared with the ZnHA group in all experimental periods; however, a considerable amount of new bone formation was observed surrounding the ZnHA spheres at the 6-month time point compared with the HA group (p < .05). Both biomaterials were biocompatible, and the combination of zinc with hydroxyapatite was shown to improve bone repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.