Abstract
Residual tetracycline antibiotics (TCs) in farmland soils with the application of livestock manure cause risks to the growth of vegetables and soil ecology. Here, pot experiments are carried out using through exogenous addition of different levels of oxytetracycline (OTC), tetracycline (TC), and chlortetracycline (CTC), to study the physiological toxicity, uptake, and transportation of TCs in lettuce. The subsequent degradation of TCs in soil was also evaluated along with analyses of soil enzyme activity and microbial population dynamics. The results showed that the biomass of lettuce decreased with application of TCs as well as the chlorophyll-a, chlorophyll-b, and carotenoid content. Consequently, net photosynthetic rates were inhibited, and SOD, POD, and CAT increased under the stress imposed by the TCs. With an increase in the level of TC application, uptake by lettuce plants increased while the bioconcentration and translocation factors decreased. When OTC, TC, and CTC in the soil were below 150 mg·kg-1, the health risk from the edible parts of lettuce was low (HQ<0.1). The TC degradation rate in different soils was ranked in the order of control soil > rhizosphere soil > bulk soil. The OTC degradation rates in the soils were significantly lower than for TC and CTC. TCs (150-1350 mg·kg-1) significantly inhibited urease and rhizosphere catalase activity in soil and reduced the number of soil culturable bacteria and fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.