Abstract
Microbially-induced calcite precipitation (MICP) is an emerging ground-modification technique. This paper presents the results of laboratory experiments that elucidate some biological factors affecting bioaugmentation and biostimulation strategies of MICP. Co-culture experiments suggest that ureolytic bacterium Sporosarcina pasteurii (DSMZ 33) might release the enzyme urease once introduced into a medium containing non-ureolytic bacterium Bacillus subtilis (DSMZ 6397) due to lysis by the latter, resulting in uncontrolled calcite precipitation. This suggests that exogenous bacteria introduced into a native soil might not survive due to adverse action by indigenous bacteria. It is shown that effective biostimulation of indigenous ureolytic bacteria in low-nutrient sand can be achieved using a stimulation medium containing 200 mM urea, complemented with a simple carbon source (molasses). Changes in microbial population following stimulation were quantified, using genetic enumeration, to show that (a) the net increase in urease activity is not accompanied by increases in the relative abundance of ureolytic bacteria, (b) nitrifying bacteria are part of the enriched indigenous population and (c) nitrifying bacteria can be stimulated by the addition of ammonium only. The use of the lowest effective urea concentration and simple carbon is advocated for sustainable biostimulated MICP, yielding lower ammonium emissions and reduced post-treatment recovery overheads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.