Abstract
BackgroundImproving survival for patients diagnosed with metastatic disease and overcoming chemoresistance remain significant clinical challenges in treating breast cancer. Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by a lack of therapeutically targetable receptors (ER/PR/HER2). TNBC therapy includes a combination of cytotoxic chemotherapies, including microtubule-targeting agents (MTAs) like paclitaxel (taxane class) or eribulin (vinca class); however, there are currently no FDA-approved MTAs that bind to the colchicine-binding site. Approximately 70 % of patients who initially respond to paclitaxel will develop taxane resistance (TxR). We previously reported that an orally bioavailable colchicine-binding site inhibitor (CBSI), VERU-111, inhibits TNBC tumor growth and treats pre-established metastatic disease. To further improve the potency and metabolic stability of VERU-111, we created next-generation derivatives of its scaffold, including 60c. Results60c shows improved in vitro potency compared to VERU-111 for taxane-sensitive and TxR TNBC models, and suppress TxR primary tumor growth without gross toxicity. 60c also suppressed the expansion of axillary lymph node metastases existing prior to treatment. Comparative analysis of excised organs for metastasis between 60c and VERU-111 suggested that 60c has unique anti-metastatic tropism. 60c completely suppressed metastases to the spleen and was more potent to reduce metastatic burden in the leg bones and kidney. In contrast, VERU-111 preferentially inhibited liver metastases and lung metastasis repression was similar. Together, these results position 60c as an additional promising CBSI for TNBC therapy, particularly for patients with TxR disease.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have