Abstract

Carotenoids are naturally occurring organic pigments that are believed to have therapeutic benefit in treating cardiovascular disease (CVD) because of their antioxidant properties. However, prospective randomized trials have failed to demonstrate a consistent benefit for the carotenoid beta-carotene in patients at risk for CVD. The basis for this apparent paradox is not well understood but may be attributed to the distinct antioxidant properties of various carotenoids resulting from their structure-dependent physicochemical interactions with biologic membranes. To test this hypothesis, we measured the effects of astaxanthin, zeaxanthin, lutein, beta-carotene, and lycopene on lipid peroxidation using model membranes enriched with polyunsaturated fatty acids. The correlative effects of these compounds on membrane structure were determined using small-angle x-ray diffraction approaches. The nonpolar carotenoids, lycopene and beta-carotene, disordered the membrane bilayer and stimulated membrane lipid peroxidation (>85% increase in lipid hydroperoxide levels), whereas astaxanthin (a polar carotenoid) preserved membrane structure and exhibited significant antioxidant activity (>40% decrease in lipid hydroperoxide levels). These results suggest that the antioxidant potential of carotenoids is dependent on their distinct membrane lipid interactions. This relation of structure and function may explain the differences in biologic activity reported for various carotenoids, with important therapeutic implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.