Abstract

BackgroundBiolistic gene gun transfection has been used to transfect organotypic cultures (OTCs) or dissociated cultures in vitro. Here, we modified this technique to allow successful transfection of acute brain slices, followed by measurement of neuronal activity within a few hours. New methodWe established biolistic transfection of murine acute cortical slices to measure calcium signals. Acute slices are mounted on plasma/thrombin coagulate and transfected with a calcium sensor. Imaging can be performed within 4 h post transfection without affecting cell viability. ResultsFour hours after GCaMP6s transfection, acute slices display remarkable fluorescent protein expression level allowing to study spontaneous activity and receptor pharmacology. While optimal gas pressure (150 psi) and gold particle size used (1 μm) confirm previously published protocols, the amount of 5 μg DNA was found to be optimal for particle coating. Comparison with existing methodsThe major advantage of this technique is the rapid disposition of acute slices for calcium imaging. No transgenic GECI expressing animals or OTC for long periods are required. In acute slices, network interaction and connectivity are preserved. The method allows to obtain physiological readouts within 4 h, before functional tissue modifications might come into effect. Limitations of this technique are random transfection, low expression efficiency when using specific promotors, and preclusion or genetic manipulations that require a prolonged time before physiological changes become measurable, such as expression of recombinant proteins that require transport to distant subcellular localizations. ConclusionThe method is optimal for short-time investigation of calcium signals in acute slices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.