Abstract

Bioleaching is promising to meet the demand of strategic vanadium both economically and environmentally. Whereas the combination of bioleaching with traditional techniques is of great interest, little is known on bioleaching of vanadium from abundant vanadium-bearing resources utilized/produced in existing processes. This study investigated the bioleaching of vanadium from vanadium-titanium magnetite, steel slag, and clinker, which are common raw mineral and intermediates used in conventional vanadium extraction process. Clinker had greater leachability by Acidithiobacillus ferrooxidans, compared to vanadium-titanium magnetite and steel slag. Pulp density, inoculum volume, initial pH and initial Fe2+ concentration had influencing effects on this bioleaching process. Under optimal condition with 3% pulp density, 10% inoculum volume, initial pH at 1.8, and 3 g/L initial Fe2+ concentration, the bioleaching of clinker achieved the maximum vanadium leaching efficiency of 59.0%. Both X-ray fluorescence and energy dispersive spectroscopy analysis confirmed the reduction of vanadium content in the solid residues after leaching. The results of Community Bureau of Reference sequential extraction suggested that vanadium in acid-soluble and oxidizable phase was more easily leachable. This study is helpful to develop sustainable and practical techniques for vanadium extraction from abundant raw materials and step forward in combining bioleaching with traditional process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.