Abstract
ABSTRACTBioleaching is an economic, novel practice for extraction of metals from their sources by microorganisms. The current study aimed to extract uranium from Egyptian ores using native strains of actinomycetes. Two types of rocks and one ore sample were collected from west-central Sinai, Egypt. Major oxides of the samples and fourteen heavy metals, including uranium, were determined. X-ray diffraction analysis proved that uranium was present in the samples in various structures. Uranium was present in different concentrations, 220, 770, and 550 mg/kg in sandstone, granite, and manganese ore, respectively. Thirty-four actinomycete isolates were recovered from the studied samples using four different isolation media. Acid production capabilities were employed to select isolates for further leaching experiments. Bioleaching experiments were carried out using sterile and non-sterile ore samples. Using sterile ore samples, the highest solubilization percentages of U3O8 were 44.5, 38.55, and 16.76% from sandstone, manganese ore, and granite sample, achieved by isolates UA12, UA5, and U7, respectively. Lower solubilization percentages of U3O8 were recorded by using non-sterile ore samples. Investigating the factors affecting the bioleaching abilities of the tested organisms revealed that 10 days of incubation with 4% pulp density were the best conditions for U3O8 solubilization. The most efficient isolates were identified using 16S rRNA gene sequence analysis. UA12 identified to be Streptomyces bacillaris, while UA5 could not be identified, and U7 was assigned as uncultured bacterium clone. Scanning electron microscope examination of the bioleaching experiment showed different growth intensity within the active isolates. For larger-scale extraction purposes, a kilogram of sandstone, containing 220 mg of U3O8, was used in the form of a truncated cone in a heap leaching experiment. After 20 cycles, 14.72 mg/l (6.7%) of U3O8 was leached by S. bacillaris, while 19.36 mg/l (8.8%) of U3O8 was leached by chemical leaching using sulfuric acid. The results of this study prove that the extraction of uranium using actinomycetes could be exploited as less polluting, more economical, and more effective than traditional chemical extraction especially from low-grade ores or mining wastes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have