Abstract

A method is described based on high-performance immunoaffinity chromatography for examining the interactions of immobilized antibodies or related binding agents with their targets. It is shown how this method can be used to obtain information on the binding, elution and regeneration kinetics of immobilized binding agents, such as those used with immunoaffinity supports. The theory behind this approach is briefly described and it is demonstrated how both the kinetic and thermodynamic properties of a biointeraction can be determined experimentally through this method. Several applications are used to illustrate this technique, including antibody–antigen interactions and the binding of aptamers with their targets in the presence of silica-based supports. The same approach can be adapted for use with other types of targets, binding agents and support materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.