Abstract

Implant-associated infections and excessive immune responses are two major postsurgical issues for successful implantation. However, conventional strategies including antibiotic treatment and inflammatory regulation are always compromised due to the comodification of various biochemical agents and instances of functional interference. It is imperative to provide implant surfaces with satisfactory antibacterial and anti-inflammatory properties. Here, a dual-effect nanostructured polyetheretherketone (PEEK) surface (NP@PDA/Zn) with bionic mechano-bactericidal nanopillars and immobilized immunomodulatory Zn2+ is designed. The constructed hybrid nanopillars display remarkable antibacterial performance against Gram-negative and Gram-positive strains through the synergy of physical and chemical bactericidal effects imposed by nanopillars and Zn2+. Meanwhile, the immunoregulatory property is evaluated through the investigation of macrophage polarization both in vitro and in vivo, and the results reveal that NP@PDA/Zn could downregulate the expression of M1-related cytokines and decrease the M1 macrophage recruitment to lower the inflammatory response. Notably, the surface exhibited exceptional biocompatibility with discerning biocidal activity between bacterial and mammalian cells and antioxidant performance that effectively scavenges ROS, minimizing potential cytotoxicity. Taken together, NP@PDA/Zn presents a convenient and promising strategy of combining synergistic bactericidal activity and inflammatory regulation without any mutual interference, which can support the development of multifunctional implant-associated materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.